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The high-velocity distribution of a two-dimensional dilute gas of Maxwell 
molecules under uniform shear flow is studied. First we analyze the shear-rate 
dependence of the eigenvalues governing the time evolution of the velocity 
moments derived from the Boltzmann equation. As in the three-dimensional 
case discussed by us previously, all the moments of degree k >/4 diverge for 
shear rates larger than a critical value a(~} ), which behaves for large k as 
a~)~k  -I. This divergence is consistent with an algebraic tail of the form 
f ( V )  ~ V 4 o~a), where a is a decreaging function of the shear rate. This expec- 
tation is confirmed by a Monte Carlo simulation of the Boltzmann equation far 
from equilibrium. 

KEY WORDS: Boltzmann equation; velocity moments; Maxwell molecules; 
uniform shear flow; DSMC method. 

I. I N T R O D U C T I O N  

A difficult and interesting physical problem concerns the high-velocity dis- 
tribution in a gas far from equilibrium. This information can be obtained 
indirectly from the knowledge of high-degree velocity moments, but even 
this represents a formidable task. In addition, the high-velocity distribution 
is expected to depend on the particular non-equilibrium state considered. 
In this paper we will study this problem in the case of the so-called uniform 
shear flow (USF) state, which is perhaps the simplest inhomogeneous 
situation arbitrarily far from equilibrium. In the USF state, the only non- 
zero hydrodynamic gradient is OUx/Oy = a, where u(r) is the flow velocity 
and a is the c o n s t a n t  shear rate. 
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Long time ago, Ikenberry and Truesdell ~l) showed that the infinite 
hierarchy of moment equations obtained from the Boltzmann equation for 
Maxwell molecules t2) can be recursively solved in the case of the USF. In 
particular, they obtained explicit expressions for the second-degree 
moments, which are related to the rheological properties, as nonlinear 
functions of the shear rate. More recently, explicit expressions for the 
fourth-degree moments have also been derived/3) While the second-degree 
moments remain finite for arbitrary shear rates, there exists a critical value 
al 4) of the shear rate, beyond which the fourth-degree moments diverge/3' 4) 
The analysis of this singular behavior for moments of degree through 
k = 36 has been carried out in ref. 5. The results are exact and show that 
all the moments of the same degree k/> 4 are divergent if the shear rate 
is larger than a certain critical value _tk) The set of critical values 

(4) a(6)  ac , c ,..., ale 36)} is decreasing and an extrapolation for larger values of k 
suggests that a~k ~ ~ k  1, so that there is no lower bound of a~,k ~. This 
behavior of the moments seems to indicate that the distribution function 
presents an algebraic high-velocity tail for any value of the shear rate. To 
the best of our knowledge, however, a confirmation of the above expecta- 
tion has not been presented. 

The aim of this paper is to investigate this problem in the two-dimen- 
sional case. Since the geometry of the USF is essentially bidimensional, this 
allows us to get more detailed information without missing the relevant 
physical aspects. In Section II we derive the hierarchy of moment equations 
from the Boltzmann equation for Maxwell molecules. It is shown again 
that the moments exhibit the same kind of behavior as in the three-dimen- 
sional case, but now the analysis has been extended up to k = 240. The 
expected algebraic tail of the velocity distribution f (V)  is confirmed in 
Section lII by means of the direct simulation Monte Carlo (DSMC) 
method for solving the Boltzmann equation/6) More specifically, the results 
show that f(V),-~ V -4-~a)  where a(a) is a decreasing function of the shear 
rate. Finally, the results are discussed in Section IV. 

II. VELOCITY M O M E N T S  

In the USF state, the velocity distribution function f(r ,  v, t) becomes 
spatially homogeneous when the velocities are referred to the flow velocity 
u(r)--ayR, i.e., f(r, v, t)= f(V, t), where V = v - u .  Consequently, the 
Boltzmann equation can be written as (3) 

atf-aO V y ~  f = ~ f dVl f dfiB(g, cosz)(f ' f ' l-f f~)-J[f f] (2.1) 
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where J[ f , f ]  is the nonlinear Boltzmann collision operator. (7) Here, 
g = V - V ~ ,  fi is a unit vector along the direction of the post-collisional 
relative velocity, and cos Z = fi" g- The second term on the left-hand side of 
Eq. (2.1) represents an inertial force. In the absence of a thermostat, the 
temperature T grows with time, so that the USF is not stationary. The 
heating equation is 

d 
nk8 dt T= -aexy (2.2) 

where n is the constant number density, k8 is the Boltzmann constant, 
nksT= l t r  P. and P is the pressure tensor, defined as 

P~i=m f dV ViVjf (2.3) 

m being the mass of a particle. In Eq. (2.2) and in the definition of T we 
have considered the case of a two-dimensional system. Henceforth, this 
will be the case under consideration. In the particular case of Maxwell 
molecules, ~8) i.e., particles interacting via a repulsive potential of the form 
r 2, the collision rate B does not depend on the magnitude of the relative 
velocity g of the colliding particles. As a consequence, the moments of 
degree k of the collision operator can be expressed as bilinear combinations 
of moments of degree equal to or less than k. (2'9) This property and the 
simplicity of the USF allows one to get, in principle, the moments in a 
recursive way. In particular, the elements of the pressure tensor obey a 
closed set of linear equations) 3) Its solution in the long-time limit gives 
T( t) ~ e 2~(a)t, where 

2 [1 ( 2 7 a 2 \ ]  
~ ( a ) = ~ v s i n h  2 g c o s h - '  1 + - 2 - 7 ) ]  (2.4) 

In this equation, v = n20~ is an effective collision frequency, where 202 is an 
eigenvalue of the linearized Boltzmann operator (c.f. (2.8)). 

From a physical point of view, it is interesting to scale velocities with 
respect to the thermal velocity Vo(t)=x/2kBT(t)/m. Thus, we make the 
changes V ~ V/vo, f ~ v~f and Eq. (2.1) (for Maxwell molecules) becomes 

0 0 O 
o t f  - a V y - ~  f -o t  ~ "  V f  =J[f, f ]  (2.5) 
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It is worth to remark that Eq. (2.5) is the same as the one corresponding 
to the USF state in the presence of a thermostat force of the form 
-m0~V. (l~ This equivalence holds only for Maxwell molecules. The explicit 
solution of Eq. (2.5) for arbitrary values of the shear rate a is not 
known. (ll) In order to get analytical information about the high-velocity 
behavior off,  we resort to its velocity moments. 

Let us introduce the set of polynomials 

r i ] 1,/2 Imt Iml eimO 
~Urm(V) = re(r + ml)! V t r ( V 2) (2.6) 

where L~ "i are associated Laguerre polynomials and 0 = t a n  ~(Vy/Vx). 
The set { gSrm} is orthonormal with the inner product 

<~lq,)=~ 'fdVe v:r162 (2.7) 

The choice of the set of polynomials (2.6) is motivated by the fact that they 
are eigenfunctions of the linearized Boltzmann equation for a two-dimen- 
sional Maxwell gas. (12) The corresponding eigenvalues are 

2~~ d z B ( c o s z )  1 +,~2r+lmr, O--COS2~+i"i~cos Imlz2 

- s i n  ~ cos [ ~ - ~  + n + 2 r ) l  (2.8) 

We define the moments 

Mrm(t) =l  f dV 7tr*m(V) f(V, t) n 
(2.9) 

so that the distribution function can be represented by 

f ( V )  = nrc ' e -  v2 ~, M k ( t  ) ~k(V ) (2.10) 
k 

where we have used the short-hand notation k - ( r , m ) .  Due to the 
invariance property f ( V ) =  f ( -  V) of Eq. (2.5), we can restrict ourselves to 
the subset { ~Urm } with even values of 2r + [ml - k .  In that case, the number 
of independent polynomials of degree k is k + 1. 
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Multiplying both sides of Eq. (2.5) by 7~*(V) and integrating over V 
one gets 

0 O a >,  ~M~+aY~<~,I L~I~U~>*M~,+~Y,<~,IV.b--fI~e~ M~, 
k' k' 

t 

= - - n 2 ~  ~ Jkk,k,,Mk,Mk,, (2.11) 
k', k" 

where the dagger in the last summation denotes the constraints k' + k" = k 
and 0 < k', k" < k, so that it includes only moments of degree less than k. 
The explicit form of the coefficients Jkk,k~ will not be needed here. Since the 
action of the operator Via/OVj on 7tk is a polynomial of degree k, the 
brackets appearing in Eq. (2.11) vanish unless k'~< k, so that the hierarchy 
(2.11 ) can be solved recursively. If the moments of degree k' < k are known, 
then Eq. (2.11) can be seen as an inhomogeneous linear system of first 
order differential equations for the moments of degree k. According to this, 
Eq. (2.11) can be recast into the form 

0tMk + ~ 5r (2.12) 
k 

(k '  = k )  

where Nk denotes the terms in Eq. (2.11) involving moments of degree less 
than k and, for a given degree k, 5r is a (k + 1 ) x (k + 1 ) matrix defined 
by 

_ o 0 
5Pkk , -- (n2 k + ks) 6 kk' + a< Tk,] Vy ~ ITk > * (2.13) 

Here we have taken into account that (see the Appendix) 

a 
<Tk'l V.~--~ I~uk> =k,  (k =k ' )  (2.14) 

In the Appendix it is also shown that, for 2r + Im] = 2r '+  ]m'], 

. a v x  l %m> = Srm C~l,.'l. lml + 2--  Sr',,,"~lml, lm'l + 2 - - ~  lm161,.l l,,,'l 

• [ H(m) H ( m ' ) -  H ( - m )  H ( - m ' )  ] (2.15) 
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where 

i ~/r(r+ Iml + 1) (2.16) Srm=5 

and H is Heaviside's step function, i.e., H(x) = 1 if x i> 0, being 0 otherwise. 
It is important to emphasize that Eq. (2.12) holds for any value of 

the shear rate. In fact, the matrix Lfkk,, depends on a both explicitly and 
through 0c(a). To clarify the subsequent analysis, let us assume that the 
shear rate is such that the moments of degree k' < k have reached stationary 
values. Thus, the time behavior of Mk is given by the eigenvalues 2k(a) 
of 5r ; obviously, 2k(0) = 2 ~ For long times, the behavior is governed by 
the eigenvalue with the smallest real part, 2k(a). If Re 2k(a) > 0, then all the 
moments of degree k attain stationary values; otherwise, they grow 
exponentially in time. We have obtained the eigenvalues 2k(a) from k = 4  
through k = 240. For the sake of illustration, we have considered the case 
of isotropic scattering,(12) i.e., B(cos Z) = const. In that case, v = n2~ = nnB. 
Hereafter, we take v I as the unit of time and we also take 2~ = 1. As 
happens in the three-dimensional case, (5) we have found that 2k turns out 
to be 2(k/2)o, is a real number, and monotonically decreases as the shear 
rate increases. Eventually, 2(k/2)0 becomes negative for shear rates larger 
than a certain critical value a*, k). As an example, Fig. 1 shows the shear-rate 

Fig. 1. 
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Shear-rate dependence of the real part  of the eigenvalues corresponding to the 
moments of degree 2r + ]m] = 40. 
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dependence of the real part of the eigenvalues corresponding to degree 
k = 40. The smallest eigenvalue, ~-4o = )]'2o. o, becomes negative if a > a~ 4~ "-" 
0.094. It is interesting to remark that the degeneracy of the eigenvalues at 

0 equilibrium is broken; in particular, both  2o9. 2 and 218,4 degenerate in a 
pair of real eigenvalues. The value of the critical shear rate al. k), beyond 
which the moments of degree k diverge, decreases as k increases. For 
instance, a124~ ~-- 0.016. 

From a practical point of view, we have determined a~ k) as the 
smallest real root of Ak(a)=0, where zl~--detSCkk,. The results are 
represented in Fig. 2 as a log-log plot. The points corresponding to large 
values of k tend to align with a slope practically equal to - 1 .  Conse- 
quently, we can conclude that there is no lower bound of the set {a~)}, i.e., 
limk_ ~ a~ ~)= 0. This means that, no matter how small the shear rate is, 
there is always an infinite number of diverging moments. In addition, the 
asymptotic behavior for large k is of the form a~P ,~ rick 1, the coefficient 
being dc "" 3.8. This suggests that a certain scaling might exist for large 
values of k. This is confirmed by Fig. 3, where the scaled determinant 
Fk(6)=Ak(a)/Ak(O) is plotted versus the scaled shear rate 6=ka for 
k = 12, 30, 74, 150, and 220. We see that, as k increases, Fk(6) tends to a 
common curve with a zero at a = a c .  It is interesting to note that the 
asymptotic behavior a~ k~ - k  1 is consistent with the results obtained in 
ref. 5 for a three-dimensional system with both the actual and the isotropic 
scattering. This suggests that this behavior is independent of the dimen- 
sionality and the details of the scattering law (for Maxwell molecules). We 
have confirmed the latter conclusion by considering the highly anisotropic 

1 

1 

l 

5 ~ 
I 

I 

�9 ~ 1 7 6 1 7 6 1 7 6 1 7 6  

~149176176176176 ! 

[ L ~ s J ~ . . . . .  Z I 

2 :3 4 5 6 
111 k: 

Fig. 2. Log-log plot of  alk ) versus k. The straight line has a slope equal to - 1. 
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Scaled determinant Fk(d)= Ak(a)/Ak(O) as a function of the scaled shear rate d= ka 
for k = 12, 30, 74, 150 and 220. 

scattering law B ( c o s z ) ~ :  6(Z (n/2)) Again, we get -(kl  ~dck-1 with - -  ( ' / c  

practically the same value of the coefficient d,.. 
A natural question is, what information about  the high-velocity dis- 

tribution can be drawn out from this singular behavior of the moments? 
The simplest possibility is that a stationary solution of Eq. (2.5) does exist, 
but with an algebraic tail of the form f ~  V 4 ~. In that case, all the 
moments of degree equal to or larger than 2 + a would be divergent. This 
scenario is consistent with our analysis of the moments  if a is a decreasing 
function of the shear rate, the critical values _~k~ being then the values at ( g c  

which a(a)  takes integer values k - 2. Furthermore,  a goes to infinity as the 
shear rate tends to zero according to the law a ,,~ dca i. Since the moments  
of degree 2 are convergent for any value of the shear rate, a must be 
positive. We have not been able to prove the above conjectures from an 
exact analysis of Eq. (2.5). Alternatively, we have resorted to a numerical 
solution and the results are presented in the next Section. 

III. M O N T E  C A R L O  S I M U L A T I O N  

A highly reliable numerical algorithm to solve the Boltzmann equation 
is the so-called direct simulation Monte Carlo (DSMC) method. (61 Its 
application to USF has been validated in several worksJ TM 14) Since the 
problem is spatially homogeneous (in the Lagrangian frame), only the 
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velocities Vi, i = 1,..., N of a "system" of N particles need to be stored. At 
times t = At, 2 At,..., where At is a time-step much smaller than the mean 
free time, the velocities are updated due to (i) collisions and (ii) external 
forces: {V~}--,(~'{V'i} ~,~i){V~'}. According to the Boltzmann collision 
term for isotropic Maxwell molecules, the average number of particles that 
change their velocities due to collisions during an interval At must be 
(2nnB) NAt .  Consequently, in the simulations a number vNAt of pairs is 
chosen at random. For each pair (i, j), a direction fi is taken at random 
with equiprobability and the velocities are changed to 

r 1 A ' lgfl, v ) = l ( v i n t - V j ) - - s g n  (3.1) v; = l ( v ,  + vj) + 

where g = V~-Vj.  For non-colliding particles, V'g = V;. Once the collision 
stage ends, the velocities are changed due to the action of the inertial force 
and the thermostat: 

V~' = e ~ ~'(V',.- a .  V',-At) (3.2) 

where the elements of the tensor a are a o. = a 6ix @.  
In order to analyze the distribution function for high velocities, it is 

convenient to focus on the magnitude of the velocities and to define 
q~(V) =n l~ dVVf (V) .  In the simulations, this quantity is obtained as 

1 ( 1 ) (  , )  
N A V  H V i - V + - ~ A V  H - V i + V + - ~ A  

i = l  

(3.3) 

We have taken N =  10 4, At=0.001, and A V=0.04. To improve the 
statistics, the results have been averaged over a number X of different 
replicas. 

According to the conjecture stated at the end of Sect. II, the behavior 
of q5 for large V is 

q~(V) ~ V 3 ~(a), (3.4) 

where c~) tr(a~ ) = k - 2 .  Figure 4 shows the time evolution of V5~(V)  for 
_ (4) _ 5.847. The number of replicas has been V-- 11.6 and V= 13.3 at a - a  c 

X = 5 0 0 0  and the initial condition has been local equilibrium. It is 
observed that in both cases a common stationary value is reached after a 
transient period of t ~ 20, which is about 10 times the relaxation time of the 
second-degree moments. As a measure of how far the system is from 
equilibrium at a ~ 5.847, it is interesting to remark that, at equilibrium, 

822/88/5-6-12 
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Fig. 4. Time evolution of Vsq~(V) for V =  11.6 (solid line) and V =  13.3 (dashed line). The 
shear rate considered is a = a141 ~ 5.847. 

VSclJ(V),,,IO -52 at  V = l l . 6  and Vs~b(V)~10 70 at V=13.3. We have 
verified that the behavior found in Fig. 4 extends to higher velocities; of 
course, the statistical fluctuations increase considerably as the velocity 
increases. This is shown in Fig. 5, where the scaled distribution Vs~(V), 
averaged over the time interval 15 < t <20 and with X---600, is plotted 
versus V. This quantity reaches a value independent of the velocity for 
V>I0.  
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Plot of Vs~(V)  for a = a~ 4) ~ 5.847. 
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Fig. 6. Plot of VT~(V) for a=a~6)~-2.196. 

_(6) , . ~  2.196. In this case, We have also considered the shear rate a = u c - 
the relaxation time of  the distribution tail is longer than the one with the 
previous shear rate. Now,  V7~(V)  must reach a constant value, as shown 
in Fig. 6, where the values have been averaged over 45 < t < 60 with 
X = 500. Since now the high-velocity population is smaller than before, the 
fluctuations have increased significantly. 

So far, we have chosen values of  the shear rate at which a takes 
integer values. For other values of  a, a cannot be inferred from the 
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Fig. 7. Plot of V36qs(V) for a = 12. 
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knowledge of the singular behavior of the moments. In that case, a must 
be obtained empirically from the slope of a log-log plot of �9 versus V for 
long times and large velocities. In this way, we have obtained a-~ 1.4 for 
a = 8 and a ~- 0.6 for a = 12. The latter case is represented in Fig. 7, where 
we have averaged over 15 < t < 2 0  with Y = 2 0 0 .  Since a decreases 
significantly as the shear rate increases, it is tempting to speculate that 
l i m a ~ a ( a )  =0.  Of course, a cannot be negative since the second-degree 
moments are finite for any shear rate. 

To complete our knowledge about the distribution function f (V) ,  we 
have analyzed its dependence on the direction V in the high-energy region. 
We have found that this dependence is the same for all the values of V, so 
that f (V) , ,~nV I ~ ( F ) 0 ( 0 ) .  Thus, O(0)dO is the probability of finding a 
particle with a polar angle between 0 and O+dO in the high-energy 
region. Figure8 shows a polar diagram of the function O(0) for 
a=uc_(4) , ~ ,  5.847, a = 8, and a = 12. It is clear that this distribution is highly 
anisotropic, although the characteristic symmetry of the USF, namely 
O(0) = O(0 + n) is preserved. Most of the particles move along directions 
almost parallel to the x-axis, which is the direction of the inertial force. 
This effect is more significant as the shear rate increases. 

Fig. 8. Polar diagram of the function O(0), evaluated in the region V> 11.5 for 
a=al 4t ~_ 5.847 (---), a= 8 ( - - ) ,  and a= 12( . . . . .  ). 
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IV. CONCLUSIONS 

In this paper we have analyzed the high-velocity distribution of a two- 
dimensional dilute gas of Maxwell molecules described by the Boltzmann 
equation, under uniform shear flow. This state, in which the only non- 
equilibrium control parameter is the constant shear rate a, is one of the 
most widely studied in several statistical-mechanical problems, such as 
nonlinear transport 115) or the relationship with chaotic dynamics. 1~6) Two 
complementary approaches have been followed: (i) an exact analysis of the 
hierarchy of moment equations and (ii) a numerical evaluation of the 
velocity distribution function by means of the DSMC method. Both routes 
lead to the conclusion that the stationary velocity distribution develops an 
algebraic high-velocity tail of the form f(V; a) ~ C(a) V-4-~a)O(~'; a). For 
a d-dimensional system, the behavior would be t 1 7 ) f  ~ v - d -  2 - a ,  The expo- 
nent a(a) is a decreasing function of the shear rate with the properties 
o ~ a - -  1 for small a and lim a ~ ~ t7 -- 0. While we have not been able to get 
an explicit expression for a(a), the analysis of the moments carried out in 
Sect. ]I provides a wealth of information about it. In particular, Fig. 2 can 
be interpreted as showing t~(a) by making the changes k ~ a + 2  and 
a~ k) ~ a. The polar distribution O indicates that most of the energetic par- 
ticles tend to move, relative to the local velocity, along a narrow interval 
of directions, which are quasi-parallel to the flow direction. Regarding the 
amplitude C(a), from Figs. 5-7 one can conclude that it increases as 
the shear rate decreases. The fact that the algebraic tail persists even for 
very small shear rates implies that the population of particles with large 
velocities can be very different from that of equilibrium. As a consequence, 
those phenomena in which that population plays an important role may 
not be well described by perturbation techniques, such as the Chapman- 
Enskog expansion. ~9) 

Although we have restricted here to the Maxwell interaction, a DSMC 
investigation of the time evolution of the velocity moments for other 
repulsive interactions ~14) suggests that the above singular behavior is also 
present in those cases. The main influence of the interaction is that, for 
a given value of the shear rate in appropriate dimensionless units, the 
exponent a is larger as the repulsion becomes harder. In particular, in 
the limit of hard spheres, a is probably infinity, so that the algebraic tail 
disappears. 

The simplicity of the uniform shear flow state has allowed us to offer 
a thorough analysis of the nonequilibrium population of particles with 
large velocities. Nevertheless, we expect that some of the features found 
here might be extended to other nonequilibrium situations as well. 
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APPENDIX  

Here the equalities (2.14) and (2.15) are proved. First we list the 
properties of the Laguerre polynomials "8) that will be used: 

x d L~m,(x ) = rL~ml(x) __ (r + Im[) L~m_2 l(X) (A1) 

xL~ml(x) = - ( r  + 1)Lr[m[+ l(X) + (2r+lml+l)L~mt(x) 

-- (r + Iml) L ~  ,(x), (A2) 

d L~ml(x ) __ ]m[ 
dxx = L~_ 1 ~ I(X) (A3) 

f : d x  e-Xxl'<L~mf(x) L~,~'l(x) = {0, r' < r (A4) 
a r m ,  r t ~ r 

where Crm =-- (r + Iml)!/r! 
We note that V-O/OV = VO/a V. Thus 

V .~-~ ~ . .  = (2r + [m[) gt~m--2 x/r(r+ [rnl) 7*r_~,m (A5) 

where use has been made of the recurrence relation (A1). Equation (2.14) 
easily follows from Eq. (A5). 

Now, we consider the equality 

v ~-~-= 0~ a Y OVx sin 0cos OV - s i n  2 0O-- ~ 

- A v - A  o (A6) 

Let us consider first the matrix elements of the operator A v: 

i 
<~'m'l Avl~Y~m> =2x/Cr,m,crm (6m''m 2--1~m' m+2) 
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Since we are interested in the case 2 r +  Im] = 2 r ' +  Im'l, we only need to 
consider in the integral over x the cases r '  = r _ 1. If  r '  = r + 1, one has 

oo e_xxlml/2_l l ,  lm I 2t,. ~ Y d 
Io dx ~ + 1  ,~ ,  ~dxx 

[_xlmW2z~ml(x)'l 

( r +  1 ) Imlc ,+~ ,  imr_2 = - r ( r + l ) C ' + l ' l m l - 2  2 (A8) 

where use has been made  of  Eqs. (A1)-(A4).  Analogously,  if r '  = r - 1, one 
has 

f / d x e - x x l m l / 2 + l  Iml d L , -  ~ 2r x) x ~ E x'm'/ZL ~ml( x ) ] 

= -C , -1 ,1ml+2  Crm (A9) 

The matrix elements of  the opera tor  Ao are 

i 
<~r,m, lAel~m> = 7 - - - m ( 6 , , ,  m_2"l-(~m, m+2--2(~m,m) 

2 ~ C r , m ,  frm ' , 

1 ~? dx e-Xxlm'l/2L~,m'l(x) Iml/2 Iml - x L ,  ( x )  (AI0)  x 2 

We need to evaluate the integral over x in the cases r '  = r, r _+ 1. If  r '  = r, 
then 

~? dx e-Xxl'<L~"l(x) L~"l(x) = Crm (A11 ) 

I f r ' = r + l ,  

f~  dxe-Xx I~1 1L~ml(x) f lm l -21v '~= - - ( r + l )  C,+~ Iml 2 ~r  + 1 ~ 1  

Finally, if r '  = r - 1, 

f /  dxe-xxlml+lL~ml(x) Iml+2 L,_ 1 (x)=-rCrm 

Putt ing together  all the results, and after 
Eq. (2.15). 

(A12) 

(A13) 

some algebra, one gets 
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